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A non-transitory computer readable storage medium having
stored thereon a computer program having instructions,
which, when executed by a computer, cause the computer to
acquire a set of projection data corresponding to a plurality of
image voxels and to calculate coefficients of a regularizing
function configured to penalize differences between pairs of
the plurality of voxels that are not immediate neighbors. The
instructions also cause the computer to iteratively reconstruct
an image from the set of projection data based on the regu-
larizing function.
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1
SYSTEM AND METHOD OF ITERATIVE
IMAGE RECONSTRUCTION FOR
COMPUTED TOMOGRAPHY

BACKGROUND OF THE INVENTION

Embodiments of the invention relate generally to diagnos-
tic imaging and, more particularly, to a method and apparatus
of iterative image reconstruction for computed tomography.

Typically, in computed tomography (CT) imaging sys-
tems, an x-ray source emits a fan-shaped beam toward a
subject or object, such as a patient or a piece of luggage.
Hereinafter, the terms “subject” and “object” shall include
anything capable of being imaged. The beam, after being
attenuated by the subject, impinges upon an array of radiation
detectors. The intensity of the attenuated beam radiation
received at the detector array is typically dependent upon the
attenuation of the x-ray beam by the subject. Each detector
element of the detector array produces a separate electrical
signal indicative of the attenuated beam received by each
detector element. The electrical signals are transmitted to a
data processing system for analysis which ultimately pro-
duces an image.

Generally, the x-ray source and the detector array are
rotated about the gantry within an imaging plane and around
the subject. X-ray sources typically include x-ray tubes,
which emit the x-ray beam at a focal point. X-ray detectors
typically include a collimator for collimating x-ray beams
received at the detector, a scintillator for converting x-rays to
light energy adjacent the collimator, and photodiodes for
receiving the light energy from the adjacent scintillator and
producing electrical signals therefrom.

Typically, each scintillator of a scintillator array converts
x-rays to light energy. Each scintillator discharges light
energy to a photodiode adjacent thereto. Each photodiode
detects the light energy and generates a corresponding elec-
trical signal. The outputs of the photodiodes are then trans-
mitted to the data processing system for image reconstruc-
tion. Alternatively, x-ray detectors may use a direct
conversion detector, such as a CZT detector, in lieu of a
scintillator.

CT systems typically use analytical methods such as a
filtered back-projection (FBP) method to reconstruct images
from the acquired projection data. FBP methods of recon-
struction are based on the Fourier Slice Theorem and provide
means of reconstructing an image analytically from a single
pass through the acquired projection data to invert the Radon
transform. The typical ramp filter in standard FBP can be
modified to improve the frequency response in some situa-
tions such as high resolution imaging. These analytical algo-
rithms allow the full range of parameter choice in filter
design. If one wishes to emphasize particular spatial frequen-
cies in the reconstructed image, the full array of established
filter design techniques is available to provide whatever sup-
pression and emphasis of varying frequencies is desired.

Alternatively, an iterative technique may be used for recon-
struction to improve image quality or reduce dose, or both.
For example, model-based iterative reconstruction (MBIR)
methods may be used to estimate an image based on pre-
determined models of the CT system, the acquired projection
data, and the reconstructed image such that the reconstructed
image best fits the acquired projection data.
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MBIR methods are typically based on the optimization of
a cost functional, which is the sum of two terms:

M Eqgn. (1)
i= argrrgn{z Din(ym- Finl) + S(x)},

m=0

where X is is the value of x that achieves the minimum sum-
mation, y,, is an integral projection measurement, F, (x) is a
forward projection function, D, (y,,.F,,(X)) is a distance mea-
sure between y,, and F,,(x), and S(x) is a regularizing or
penalty function. The vector x is the discretized representa-
tion of a CT image. The first term in the brackets includes
modeling of the geometry of the scanner and the statistics of
the measurements. Minimizing this portion of the cost func-
tional may be considered as an attempt to reconstruct the
image that most closely matches the available measurements
according to a statistical metric. The second term may be
considered as a penalty function that assesses costs to any
portion of the image containing traits which are considered
undesirable. For example, large differences between neigh-
boring voxels are usually considered improbable in realistic
imagery and can be, therefore, discouraged by S(x). MBIR
reconstruction methods seek to balance the first and second
terms.

In the Bayesian estimation framework, S(x) can also be
viewed as the a priori probability density of the image
ensemble (in which case the minimization above becomes a
maximization) or, more commonly, the negative logarithm of
this density. Based on this description of S(x), choosing the
optimal image x includes weighting the choice by the prob-
ability that the given image would exist, independent of any
measurements.

One class of a priori image models known in the art is the
Markov random field (MRF). These models are characterized
by the Gibbs’ distribution, which expresses S(x) as the sum-
mation of instances of a potential applied to collections of
neighboring voxels. This formulation of the log a priori has
been shown equivalent to a voxel being independent of the
entire remainder of the image when conditioned on the values
of all other voxels with which it shares cliques, i.e., the
Markov property. A typical expression exploiting the Gibbs’
formulation is:

Eqn. (2)

sw= Y buel"—L)

ti.jeC

in which the potential p(*) is a non-negative, symmetric func-
tion, C is a clique of voxel pairs, and b, ; are directional
weighting coefficients. In one example, cliques include voxel
pairs which are nearest neighbors or are diagonally con-
nected. Thus, a 3x3 matrix is typically used where the voxel,
X,, 1s in the center, and the voxels, x;, surround the center
voxel, x,. MRF models employing the 3x3 matrix, however,
restrict control over frequency behavior of the reconstruction
operator, partly due to the limited spatial support of the regu-
larization kernel, and do not allow full control over noise and
resolution detail.

Therefore, it would be desirable to design a system and
method of iterative image reconstruction that overcome the
aforementioned drawbacks.

BRIEF DESCRIPTION OF THE INVENTION

In accordance with one aspect of the invention, a non-
transitory computer readable storage medium having stored
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thereon a computer program having instructions, which,
when executed by a computer, cause the computer to acquire
a set of projection data corresponding to a plurality of image
voxels and to calculate coefficients of a regularizing function
configured to penalize differences between pairs of the plu-
rality of voxels that are not immediate neighbors. The instruc-
tions also cause the computer to iteratively reconstruct an
image from the set of projection data based on the regulariz-
ing function.

According to another aspect of the invention, a method of
iterative image reconstruction includes acquiring a set of
projection data corresponding to a plurality of image voxels
and designing a regularizing function based on a spectral
penalty model, the spectral penalty model comprising a Fou-
rier transform of a spatial pattern of weights configured to
penalize a difference between a central voxel of a pattern and
another voxel of the pattern. The method also includes per-
forming an iterative image reconstruction technique using the
acquired set of projection data and based on the regularizing
function to generate a final image.

According to yet another aspect of the invention, an imag-
ing system includes a rotatable gantry having an opening for
receiving an object to be scanned, an x-ray source coupled to
the rotatable gantry and configured to project x-rays through
the opening, and a generator configured to energize the x-ray
source to an energy level to generate x-rays corresponding to
the energy level. The imaging system also includes a detector
having pixels therein, the detector attached to the rotatable
gantry and positioned to receive x-rays projected from the
x-ray source and a computer. The computer is programmed to
acquire a set of projection data corresponding to a plurality of
voxels and to obtain a cost function configured to penalize
differences between pairs of the plurality of voxels that are
not immediate neighbors, wherein the cost function is spa-
tially-invariant and comprises a negative penalty cost for at
least one of the differences. The computer is also pro-
grammed to iteratively reconstruct an image from the set of
projection data based on the cost function and to substitute a
surrogate function for the negative penalty cost during the
iterative reconstruction.

Various other features and advantages will be made appar-
ent from the following detailed description and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate preferred embodiments presently
contemplated for carrying out the invention.

In the drawings:

FIG. 1 is a pictorial view of a CT imaging system.

FIG. 2 is a block schematic diagram of the system illus-
trated in FIG. 1.

FIG. 3 is a flowchart illustrating a technique for recon-
structing an image according to embodiments of the inven-
tion.

FIG. 41is a plot illustrating a voxel neighborhood according
to an embodiment of the invention.

FIG. 5 is a pictorial view of a CT system for use with a
non-invasive package inspection system.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The operating environment of the invention is described
with respect to a sixty-four-slice computed tomography (CT)
system. However, it will be appreciated by those skilled in the
art that the invention is equally applicable for use with other
single or multi-slice configurations. Moreover, the invention
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will be described with respect to the detection and conversion
of x-rays. However, one skilled in the art will further appre-
ciate that the invention is equally applicable for the detection
and conversion of other high frequency electromagnetic
energy. The invention will be described with respect to a
“third generation” CT scanner, but is equally applicable with
other CT systems.

Referring to FIG. 1, a computed tomography (CT) imaging
system 10 is shown as including a gantry 12 representative of
a “third generation” CT scanner. Gantry 12 has an x-ray
source 14 that projects a beam of x-rays toward a detector
assembly or collimator 18 on the opposite side of the gantry
12. Referring now to FIG. 2, detector assembly 18 is formed
by a plurality of detectors 20 and data acquisition systems
(DAS) 32. The plurality of detectors 20 sense the projected
x-rays 16 that pass through a medical patient 22, and DAS 32
converts the data to digital signals for subsequent processing.
Each detector 20 produces an analog electrical signal that
represents the intensity of an impinging x-ray beam and
hence the attenuated beam as it passes through the patient 22.
During a scan to acquire x-ray projection data, gantry 12 and
the components mounted thereon rotate about a center of
rotation 24.

Rotation of gantry 12 and the operation of x-ray source 14
are governed by a control mechanism 26 of CT system 10.
Control mechanism 26 includes an x-ray controller 28 that
provides power and timing signals to an x-ray source 14 and
a gantry motor controller 30 that controls the rotational speed
and position of gantry 12. An image reconstructor 34 receives
sampled and digitized x-ray data from DAS 32 and performs
high speed reconstruction. The reconstructed image is
applied as an input to a computer 36 which stores the image in
a mass storage device 38.

Computer 36 also receives commands and scanning
parameters from an operator via console 40 that has some
form of operator interface, such as a keyboard, mouse, voice
activated controller, or any other suitable input apparatus. An
associated display 42 allows the operator to observe the
reconstructed image and other data from computer 36. The
operator supplied commands and parameters are used by
computer 36 to provide control signals and information to
DAS 32, x-ray controller 28 and gantry motor controller 30.
In addition, computer 36 operates a table motor controller 44
which controls a motorized table 46 to position patient 22 and
gantry 12. Particularly, table 46 moves patients 22 through a
gantry opening 48 of FIG. 1 in whole or in part.

Referring now to FIG. 3, a model-based iterative recon-
struction (MBIR) technique 80 is set forth according to an
embodiment of the invention. Technique 80 begins by acquir-
ing projection data at step 82. A determination is made, at step
84, of the resolution at which image reconstruction will be
performed. A high resolution may be chosen to show finer
details in the reconstructed image. The resolution determina-
tion may also be affected by a tradeoft between final image
resolution and computational time.

When the voxels are reconstructed from acquired CT pro-
jection data, technique 80 uses higher-order models invoked
to raise the number of degrees of freedom for spectral
response, which opens the design of regularizers, or similarly,
a priori image models, to Fourier-based spatial frequency
response methods. Thus, weightings may be chosen that are
equivalent to modeling high probability of the presence of
strong components at particular spatial frequencies.

Accordingly, technique 80 implements a construction
algorithm 86 to construct an a priori image model that may
favor or inhibit various parts of the spatial frequency spec-
trum. In order to increase the number of degrees of freedom
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compared with conventional models, an MRF model is intro-
duced having a penalization function, such as S(x) of Eqn. (2)
above, of differences between a center voxel and other voxels
beyond merely nearest neighbor voxels.

In a spatially-invariant model embodiment of the MRF, in
one example, the values of the weighting coefficients do not
depend on the values of both indices, but rather on the relative
spatial positions of the two voxels. This is similar to the
concept of a shift-invariant filter, and the application S(x) may
be considered as a shift-invariant filtering with three stages in
its evaluation at each point: 1) computation of the vector of
differences between center voxel and each other voxel within
the clique C window, 2) application of a non-negative func-
tion to each of the differences, and 3) computation of a linear
combination of the results of the function in Eqn. (2) as the
total penalty.

A Gaussian MRF has a negative log prior density in Eqn.
(2), which may be expressed as:

S)=(Y2 ) Rx, Eqn. (3)

where the matrix R contains the weighting coefficients {b, }
in its off-diagonal entries. R occupies the role of inverse
covariance matrix in this model, and, making approximations
of' wide-sense stationarity of the images and appropriate han-
dling of boundaries, the frequency-domain representation of
the norm may be used, and analysis may be performed in
terms of the spectrum of the penalty, R(w). This view of the
negative log prior expresses the behavior of the potential
function as a weighting in the frequency domain.

The log a priori spectral content also has influence in image
reconstruction. Given a CT sinogram data that may be mod-
eled as a linear transformation of the image x plus noise (i.e.,
y=Ax+n, where A represents the forward projection opera-
tor), if a quadratic penalty for mismatch of data with the
simulated forward projections is used, a special case of Eqn.
(1) emerges:

% = argmin{(y — Ax)" D(y — Ax) + x” Rx}. Eqn. (4)
Solving for the optimal x results in:
#=(4TD4+R)~ 4Dy, Eqn. (5)

and, if the response of the composite system of measurement
followed by maximum a posteriori (MAP) reconstruction is

considered, the signal component in the estimate is:
#=(4TDA4+R) 4 D4x. Eqn. (6)

Similarly to the previous formulation of the penalty func-
tion of the log a priori, the total response to the signal may be
written as:

Ap(w)
Ap(w) + R(w)

Eqn. (7)

X(w) = X(w),

with A (w) the spectral version of the forward and backward
projection kernel and with statistical weighting in the sino-
gram. This expression shows the bounds of potential manipu-
lation of the spectral content of R. When A () is formed
ideally, with forward and backprojection as exact adjunct
operators, it is non-negative definite, often approximated as
having spatial frequency response in the (X,y) plane of 1/lml.
Negative values in the spectral penalty R(w) may, in practice,
be tolerated or used to boost certain frequencies in the recon-
struction. While this concept may be unconventional, as it
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assesses a negative penalty and, therefore, unbounded a priori
density along some direction in the domain of x, the use of
such improper a priori densities is sometimes used in Baye-
sian estimation. The a posteriori density of x may still be
well-behaved.

The analysis above is relatively straightforward due to the
quadratic penalties applied and consequent linear optimal
estimates. In practice, non-quadratic, edge-preserving mod-
els may be better suited to realistic imagery, and convex but
non-quadratic potentials will be common for p in Eqn. (2).
Similar spatial frequency behavior will likely be observed in
this case as well, and the spectral prior design may be
extended to non-Gaussian priors such as the Generalized
Gaussian MRF(GGMREF) and q-Generalized Gaussian MRF
(QGGMRF) by simply inserting the {b, ;} from the quadratic
design into Eqn. (2) with more general forms of p.

With a cost function having negative penalties for voxel
differences in the prior, the total second derivative of S(x)
may become negative, and in cases where the log a priori has
a relatively large contribution to the total log a posteriori
probability, the entire cost function of Eqn. (1) could be
non-convex as a function of the voxel to be updated. An
optimization method to ensure monotonic descent and to
accelerate each voxel update includes the formation of a
substitute function by replacing each function p(x,~x,) with
f;,(). For non-negative {b, }, a quadratic substitute function
may be used to upper bound the local 1D negative log a priori
function.

For negative {b, }, a local linear function may be used in
place of the exact cost for voxel differences in the cost func-
tion to ensure the convexity of the substitute negative log
prior. This can be expressed in the following surrogate func-
tion:

oz;juz +ﬁ’;ju +Yij» b;j =0 Eqn' @®

ayu+ B, by <0

fijw) = {

The coefficients o, f3,, v, are chosen such that f,(*) and
p(x,~x;) are tangent to each other at u=%,, where X, is the
current state of the voxel whose value is to be optimized. This
leads to the computation of o, as the following:

p'(A) Eqn. (9)
=1 28 W=l
P, b<0

where A=X,—x, and p'(*) is the derivative of the potential
function p(*).

With the g-GGMREF prior and other potential functions, the
computation of p'(*) can be time-consuming. For further opti-
mization, the derivative of the prior may be linearized to allow
pre-tabulation to increase the calculation speed. Before
reconstruction starts, look-up tables of p'(A,) and p"(A,) are
built at densely sampled locations A,. In this manner, first and
second derivatives of the penalty costs are pre-computed and
stored. Then, during reconstruction, for each computation of
p'(A), the sample A, that is closest to A is chosen, and the
following linear approximation is used to compute p'(A):

P(A)=P (AR+p"(A=Ay).

For instance, a uniform sampling with 1 Hounsfield Unit
(HU) step size may be used to build tables for range 0 to 5000

Eqn. (10)
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HU. The values for the samples closest to A can also be
interpolated instead of using the nearest neighbor A, directly.

Under clinical image review display windows, the recon-
structed images from linear approximation show little or no
visual difference from the original images without linear
approximation. By wusing such linear approximation
approach, the computational cost of the iterative update steps
can be reduced by a significant amount, for example, 90%.
The accuracy of the approximation may be increased by
covering a larger range and using exponentially decreasing
sampling intervals, which may better represent the actual
distribution of neighboring voxel differences.

Referring again to technique 80, numerical iterative algo-
rithm 86 includes selecting the type of penalty function, S(x),
to be used during the iterative image reconstruction at step 88.
The penalty function may be a quadratic or other non-nega-
tive, symmetric function. In addition, single voxel values are
penalized by the penalty function. At step 90, the size or
spatial truncation of the coefficient set {b, } of the penalty
function is determined. In this manner, the size of the neigh-
borhood around each voxel for the clique C is determined. For
example, a 7x7 neighborhoodoran 11x11 neighborhood may
be chosen, which are larger than the conventional 3x3
Markov Random Field models. These neighborhoods, how-
ever, are merely exemplary, and embodiments of the inven-
tion include any sized neighborhood larger than a 3x3 neigh-
borhood.

Referring to FIG. 4, a plot 106 is shown of a voxel neigh-
borhood 108 for reconstruction according to an embodiment
of the invention. Neighborhood 108 is shown as a 7x7 win-
dow of voxels extracted in two dimensions from an image of
larger dimensions, such as 64x64. As explained above,
embodiments of the invention contemplate that neighbor-
hoods larger than 3x3 in any dimension may be used. In
addition, one skilled in the art would recognize that extending
from two dimensions to three-dimensional or higher dimen-
sional reconstructions is a straightforward process. A 3x3 box
110 at the center of the figure indicates the extent of the
neighborhood of the penalty that is applied in conventional
MRF models in Bayesian estimation in inverse problems.
Such neighborhoods typically involve only relative values of
voxels that are immediate neighbors horizontally, vertically
or diagonally.

The voxels are indexed in increasing order left-to-right,
and top-to-bottom, which increases the index by 64 between
rows. Each arrow, indicating the differencing of two respec-
tive voxels, is accompanied by a “b” coefficient from Eqn. (2)
that weights the output of the function p applied to the cor-
responding difference relative to the 200th voxel in evaluating
S(x). As shown, differences between voxel pairs that are
immediate neighbors are penalized (such as between voxel
x200 and the other voxels inside box 110) as well as difter-
ences between voxel pairs that are not immediate neighbors
(such as between voxel x200 and the other voxels outside box
110).

Referring again to FIG. 3, at step 92, a spectral model is
obtained that relates to the objects or features expected in the
final reconstructed image. In one embodiment, the spectral
model is selected from a priori spectral models generated
based on empirical evidence of known samples of tissues or
materials in sample images. These models may be generated
using classical spectral estimation techniques typically in 2 or
3 dimensions. The spectral models may each correspond to
the spectra associated with tissues of interest such as bone,
water, mixed tissues, or the like. In this step, for example, an
apriori spectral model of' bone tissue may be chosen based on
an expectation of the appearance of bone in the final image to
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be reconstructed. The existence or expectation of a certain
type of tissue in the final image to be reconstructed may come
from a priori knowledge of the scanned region or from an
analysis of the scanned data. The spectral model may be
obtained from storage (such as from a disk) in its direct usable
form, or it may be obtained and modified to match the neigh-
borhood size and sampling rate.

In another embodiment, the spectral model may be gener-
ated based on a desire to emphasize some frequencies and to
penalize other frequencies. Accordingly, a 1D spectral design
may be generated based on the type of frequency response
desired. For example, it may be determined based on the
showing of a particular type of texture in the region of interest
that a strong spectral component with frequency 50% of
Nyquist along each axis is expected. A system signal response
to the 1D spectral design may be generated and analyzed to
determine the desirability of the response. Ifthe system signal
response is undesirable, one or more iterations of moditying
the 1D spectral design and analyzing its system signal
response may be performed until a desirable response is
found. Modification of the 1D spectral design may include,
for example, changing a size of the neighborhood or changing
the desired frequencies for emphasis or penalization. The 1D
spectral design may then be expanded into a 2D or 3D spectral
model using, for example, a McClellan transform.

At step 94, the spectral model is used to generate the spatial
coefficients {b, } of the penalty function of the a priori model
at the reconstruction resolution determined at step 84. The
coefficients may be generated, for example, through Fourier
transform methods or through re-sampling of autocorrelation
estimates of the spectral model.

In another embodiment, using sample images of materials
to be reconstructed similarly to paragraph 0045, we may
choose the set of coefficients by (1) choosing the size of
neighborhood to be used in the a priori model at reconstruc-
tion, and 2) computing the coefficients as those weights that
minimize the norm of total prediction error across the sample
images. This error is defined as follows. For every set of
surrounding neighbors of the i-th voxel and set of weights in
the model of Eqn. (2), there is a value for voxel i which
minimizes the sum of the components of S(x) including voxel
i. This value is called the “prediction” of voxel i, given its
neighbors. The normed error is the sum, across the entire
sample image set, of the squared values (or other total norm,
such as total absolute error) of the differences between all
predicted values and their actual values in the images. This
prediction error norm will vary with the selection of the
coefficients, and the coefficients by may be chosen by mini-
mizing this total prediction error, as expressed below for
least-squares fitting:

brs =argmin | (xi — Xi(xjsi, ) Eqn. (1)
b -

i

This approach has an advantage in being directly applicable
to non-Gaussian image models featuring nonlinear predic-
tion.

At step 96 the resulting spectral penalty (R(w)) from the
previous steps may be inserted or input into the system signal
response to get the total response to image content if desired.
If the resulting system response is a different response than
what is desired, filter design techniques may be used to
modify R(w) as desired. The filter design techniques may
include, in one embodiment, a modification to a 1D spectral
penalty design followed by a McClellan transform as
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described above. The modified R(w) may then be inverted to
get modified coefficients of the log a priori distribution.

At step 98, technique 80 determines whether another a
priori image model should be constructed. For an image con-
taining more than one tissue type of interest, multiple spectral
models may be desired to be applied during the image recon-
struction to address the various tissues. If another a priori
image model is to be constructed 100, then technique 80
returns to step 88 of numerical iterative algorithm 86, and
process control follows as described above.

If no more a priori image models are to be constructed 102,
then at step 104, an iterative image reconstruction of the scan
data acquired at step 82 is performed using the one or more a
priori image models in an optimization or minimization of the
cost function such as that found in Eqn. (1) or Eqn. (4), for
example. The iterative image reconstruction may include
determining the regions of spatial invariance over which each
a priori model should be applied. The regions may be deter-
mined, for example, by performing a filtered back-projection
of the acquired data to generate a first image and then seg-
menting the regions in the first image. The regions may also
beupdated iteratively during the reconstruction process based
on current estimates of the reconstructed objects.

Referring now to FIG. 5, package/baggage inspection sys-
tem 200 includes a rotatable gantry 202 having an opening
204 therein through which packages or pieces of baggage
may pass. The rotatable gantry 202 houses a high frequency
electromagnetic energy source 206 as well as a detector
assembly 208 having scintillator arrays of scintillator cells or
having direct conversion arrays of direct conversion cells. A
conveyor system 210 is also provided and includes a conveyor
belt 212 supported by structure 214 to automatically and
continuously pass packages or baggage pieces 216 through
opening 204 to be scanned. Objects 216 are fed through
opening 204 by conveyor belt 212, imaging data is then
acquired, and the conveyor belt 212 removes the packages
216 from opening 204 in a controlled and continuous manner.
As a result, postal inspectors, baggage handlers, and other
security personnel may non-invasively inspect the contents of
packages 216 for explosives, knives, guns, contraband, etc.

One skilled in the art will appreciate that embodiments of
the invention may be interfaced to and controlled by a com-
puter readable storage medium having stored thereon a com-
puter program. The computer readable storage medium
includes a plurality of components such as one or more of
electronic components, hardware components, and/or com-
puter software components. These components may include
one or more computer readable storage media that generally
stores instructions such as software, firmware and/or assem-
bly language for performing one or more portions of one or
more implementations or embodiments of a sequence. These
computer readable storage media are generally non-transitory
and/or tangible. Examples of such a computer readable stor-
age medium include a recordable data storage medium of a
computer and/or storage device. The computer readable stor-
age media may employ, for example, one or more of a mag-
netic, electrical, optical, biological, and/or atomic data stor-
age medium. Further, such media may take the form of, for
example, floppy disks, magnetic tapes, CD-ROMs, DVD-
ROMs, hard disk drives, and/or electronic memory. Other
forms of non-transitory and/or tangible computer readable
storage media not list may be employed with embodiments of
the invention.

A number of such components can be combined or divided
in an implementation of a system. Further, such components
may include a set and/or series of computer instructions writ-
ten in or implemented with any of a number of programming
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languages, as will be appreciated by those skilled in the art. In
addition, other forms of computer readable media such as a
carrier wave may be employed to embody a computer data
signal representing a sequence of instructions that when
executed by one or more computers causes the one or more
computers to perform one or more portions of one or more
implementations or embodiments of a sequence.

A technical contribution for the disclosed method and
apparatus is that it provides for a computer implemented
method of iterative image reconstruction for computed
tomography.

Therefore, according to an embodiment of the invention, a
non-transitory computer readable storage medium having
stored thereon a computer program having instructions,
which, when executed by a computer, cause the computer to
acquire a set of projection data corresponding to a plurality of
image voxels and to calculate coefficients of a regularizing
function configured to penalize differences between pairs of
the plurality of voxels that are not immediate neighbors. The
instructions also cause the computer to iteratively reconstruct
an image from the set of projection data based on the regu-
larizing function.

According to another embodiment of the invention, a
method of iterative image reconstruction includes acquiring a
set of projection data corresponding to a plurality of image
voxels and designing a regularizing function based on a spec-
tral penalty model, the spectral penalty model comprising a
Fourier transform of a spatial pattern of weights configured to
penalize a difference between a central voxel of a pattern and
another voxel of the pattern. The method also includes per-
forming an iterative image reconstruction technique using the
acquired set of projection data and based on the regularizing
function to generate a final image.

According to yet another embodiment of the invention, an
imaging system includes a rotatable gantry having an opening
for receiving an object to be scanned, an x-ray source coupled
to the rotatable gantry and configured to project x-rays
through the opening, and a generator configured to energize
the x-ray source to an energy level to generate x-rays corre-
sponding to the energy level. The imaging system also
includes a detector having pixels therein, the detector
attached to the rotatable gantry and positioned to receive
x-rays projected from the x-ray source and a computer. The
computer is programmed to acquire a set of projection data
corresponding to a plurality of voxels and to obtain a cost
function configured to penalize differences between pairs of
the plurality of voxels that are not immediate neighbors,
wherein the cost function is spatially-invariant and comprises
anegative penalty cost for at least one of the differences. The
computer is also programmed to iteratively reconstruct an
image from the set of projection data based on the cost func-
tion and to substitute a surrogate function for the negative
penalty cost during the iterative reconstruction.

This written description uses examples to disclose the
invention, including the best mode, and also to enable any
person skilled in the art to practice the invention, including
making and using any devices or systems and performing any
incorporated methods. The patentable scope of the invention
is defined by the claims, and may include other examples that
occur to those skilled in the art. Such other examples are
intended to be within the scope of the claims if they have
structural elements that do not difter from the literal language
of'the claims, or if they include equivalent structural elements
with insubstantial differences from the literal languages of
the claims.
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What is claimed is:

1. A non-transitory computer readable storage medium
having stored thereon a computer program comprising
instructions, which, when executed by a computer, cause the
computer to:

acquire a set of projection data corresponding to a plurality

of image voxels;
calculate coefficients of a regularizing function configured
to penalize differences between pairs of the plurality of
voxels that are not immediate neighbors; and

iteratively reconstruct an image from the set of projection
data based on the regularizing function.

2. The computer readable storage medium of claim 1
wherein the coefficients correspond with a spatial pattern of
weights configured to penalize the differences;

wherein the differences comprise differences of each of a

plurality of voxels in a pattern from a central voxel of the
pattern; and

wherein the instructions cause the computer to generate the

spatial pattern of weights from a Fourier transform of a
spectral penalty model.

3. The computer readable storage medium of claim 1
wherein the regularizing function comprises a spatially-in-
variant regularizing function.

4. The computer readable storage medium of claim 1
wherein the regularizing function is further configured to
penalize differences between pairs of the plurality of voxels
that are immediate neighbors.

5. The computer readable storage medium of claim 1
wherein the regularizing function comprises a quadratic pen-
alty function.

6. The computer readable storage medium of claim 1
wherein the regularizing function comprises a penalty func-
tion having an independent variable; and

wherein a magnitude of a second derivative of the penalty

function is a decreasing function of a magnitude of the
independent variable.

7. The computer readable storage medium of claim 1
wherein the regularizing function comprises at least one
negative coefficient.

8. The computer readable storage medium of claim 7
wherein the instructions cause the computer to substitute a
surrogate function in place of a cost for voxel differences in
the regularizing function for the at least one negative coeffi-
cient.

9. The computer readable storage medium of claim 1
wherein the regularizing function is further configured to
penalize single voxel values.

10. The computer readable storage medium of claim 1
wherein the regularizing function is further configured to
apply a negative penalization to at least one of the differences
between pairs of the plurality of voxels.

11. The computer readable storage medium of claim 1
wherein the instructions cause the computer to:

obtain a spectral model of a first tissue type; and

generate the coefficients of the regularizing function based

on the spectral model.

12. The computer readable storage medium of claim 11
wherein the instructions cause the computer to generate the
coefficients of the regularizing function via one of a Fourier
transform method and a re-sampling of autocorrelation esti-
mates of the spectral model.

13. The computer readable storage medium of claim 11
wherein the instructions cause the computer to obtain the
spectral model from a plurality of a priori spectral models
generated based on empirical evidence of known samples of
the first tissue type.
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14. The computer readable storage medium of claim 11
wherein the instructions cause the computer to transform a
spectral model having a single dimension into a spectral
model having at least two dimensions to obtain the spectral
model of the first tissue type, the spectral model having a
single dimension based on a type of frequency response
desired.
15. The computer readable storage medium of claim 1
wherein the instructions cause the computer to generate the
coefficients of the regularizing function via calculation of a
set of weights that minimize a norm of total prediction error
across a sample image.
16. A method of iterative image reconstruction comprising:
acquiring a set of projection data corresponding to a plu-
rality of image voxels;
designing a regularizing function based on a spectral pen-
alty model, the spectral penalty model comprising a
Fourier transform of a spatial pattern of weights config-
ured to penalize a difference between a central voxel of
a pattern and another voxel of the pattern; and
performing an iterative image reconstruction technique
using the acquired set of projection data and based on the
regularizing function to generate a final image.
17. The method of claim 16 wherein designing the regu-
larization function comprises performing the Fourier trans-
form of the spectral penalty model to generate coefficients for
the regularization function; and
wherein the central voxel and the another voxel are not
immediate neighbors in the pattern.
18. The method of claim 16 further comprising assigning a
value to each of a plurality of sample points in the spectral
penalty model.
19. The method of claim 18 further comprising assigning a
value of zero to a sample point corresponding with a zero
spatial frequency.
20. The method of claim 16 wherein the spectral penalty
model is rotationally invariant among at least two spatial
frequency variables.
21. The method of claim 16 wherein the spatial pattern of
weights comprises a negative penalty corresponding with a
respective spatial frequency.
22. An imaging system comprising:
arotatable gantry having an opening for receiving an object
to be scanned;
an x-ray source coupled to the rotatable gantry and config-
ured to project x-rays through the opening;
a generator configured to energize the x-ray source to an
energy level to generate x-rays corresponding to the
energy level;
a detector having pixels therein, the detector attached to the
rotatable gantry and positioned to receive x-rays pro-
jected from the x-ray source; and
a computer programmed to:
acquire a set of projection data corresponding to a plu-
rality of voxels;

obtain a cost function configured to penalize differences
between pairs of the plurality of voxels that are not
immediate neighbors, wherein the cost function is
spatially-invariant and comprises a negative penalty
cost for at least one of the differences;

iteratively reconstruct an image from the set of projec-
tion data based on the cost function; and

substitute a surrogate function for the negative penalty
cost during the iterative reconstruction.

23. The system of claim 22 wherein the computer, in being
programmed to substitute the surrogate function, is pro-
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grammed to substitute a local linear function for the negative
penalty cost during the iterative reconstruction.

24. The system of claim 22 wherein the cost function
comprises a positive penalty cost for at least one of the dif-
ferences; and

wherein the computer is further programmed to substitute

a local quadratic function for the positive penalty cost
during the iterative reconstruction.

25. The system of claim 22 wherein the computer, in being
programmed to substitute the surrogate function, is pro-
grammed to pre-compute and store the values of a first and
second derivative of the penalty cost for at least one of the
differences.
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